
Printing:
This poster is 48” wide by 36” high. It’s
designed to be printed on a large
format printer.

Customizing the Content:
The placeholders in this
formatted for you.
placeholders to add text, or click an
icon to add a table, chart, SmartArt
graphic, picture or multimedia file.

T
text, just click the Bullets button on the
Home tab.

If you need more placeholders for titles,
content
of what you need and drag it into place.
PowerPoint’s Smart Guides will help
you align it with everything else.

Want to use your own pictures instead
of ours? No problem! Just
picture
Maintain the proportion of pictures as
you resize by dragging a corner.

Explicit Planning for Efficient Exploration in
Reinforcement Learning
Liangpeng Zhang1 (L.Zhang.7@pgr.bham.ac.uk), Ke Tang2(tangk3@sustc.edu.cn), Xin Yao2,1 (xiny@sustc.edu.cn)
1CERCIA, School of Computer Science, University of Birmingham, U.K. 2Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving Intelligent
Systems of Guangdong Province, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

ABSTRACT

• Systematic exploration strategies: R-MAX, MBIE, UCRL, their
variants, etc. are essentially heuristic-based

• Choose actions greedily w.r.t. some predefined heuristics

• When heuristics do not match MDP’s property well, excessive
exploration can happen, reducing learning efficiency

• We propose that explicit planning for exploration helps

• Treat exploration as a two-part procedure:
1. Evaluate how much data is needed at each state-action pair

(= specify an exploration demand matrix)
2. Actually explore and collect data (= fulfil the demand)

• The second step can be explicitly planned by our Value Iteration for
Exploration Cost (VIEC) algorithm

• To show how explicit planning helps, exploration behaviours of
𝜀-greedy, R-MAX, MBIE, and the optimal exploration scheme in
tower MDPs are analysed and compared

• Systematic strategies (heuristics): 𝑂(𝑛2𝑚𝑑) or 𝑂(𝑛2𝑚+ 𝑛𝑚𝑑)

• Optimal exploration scheme: 𝑂(𝑛𝑚𝑑)

• 𝑛 = #states, 𝑚 = #actions, 𝑑 = demand at each state-action pair

• Exploration behaviour analysis also shows that existing
systematic strategies are weak to

• Distance traps: uncertainty being wrongly diminished

• Reward traps: irrelevant rewards that mislead exploration

DEMAND MATRIX

• To guarantee the quality of policy, systematic exploration
strategies usually use Hoeffding’s or Chernoff’s inequalities to
evaluate how much data should be collected at each (𝑠, 𝑎)

• Leads to PAC property (sample complexity bounds) or regret bounds

• R-MAX needs 𝑂(
1

𝜀2 1−𝛾 4 (𝑛 + ln
𝑛𝑚

𝛿
)) data at every (𝑠, 𝑎) to be

(𝜀, 𝛿)-PAC [Kakade, 2003; Strehl et al., 2009]

• MBIE needs 𝑂(
1

𝜀2 1−𝛾 4 (𝑛 + ln
𝑛𝑚

𝜀(1−𝛾)𝛿
)) [Strehl and Littman, 2008]

• In practice, obtaining a sufficiently good policy do not need
that much data, so people manually tune the exploration
parameters to control how much data to be collected

• We call such specifications of data requirement as
(exploration) demands

• Demand matrix 𝐷: entry 𝐷 𝑠, 𝑎 = 𝑘 means at least 𝑘 data should
be collected at (𝑠, 𝑎) in the following exploration activity

• For R-MAX with (𝜀, 𝛿)-PAC property, the elements of the initial
demand matrix 𝐷𝑜 is uniformly set to 𝐷𝑜 𝑠, 𝑎 = 𝑘0 for all 𝑠, 𝑎

where 𝑘0 = 𝑂(
1

𝜀2 1−𝛾 4 (𝑛 + ln
𝑛𝑚

𝛿
))

• MBIE & UCRL: although they seem to decide the demand “on the
fly” by using confidence intervals (CIs), the frequentist CIs
themselves work as pre-data analysis, which means that the
demand is already fixed before learning given the parameter
settings (i.e. does not change “on the fly”, which is why they can be
confidence procedures and thus have performance guarantees)

• If you already have some prior knowledge to MDP, you can directly
specify the demand matrix to reduce unnecessary exploration

• Simple strategies such as 𝜀-greedy do not have fixed demand matrix
and rely on pure luck to find useful information → low efficiency

PLANNING FOR EXPLORATION

• Exploration can be regarded as a two-step procedure:

• Step1: Specify the exploration demand

• Step2: Fulfil the demand by collecting data through MDP interaction

• (optional) jump to Step1 with updated information

• Systematic exploration strategies excel at Step1, but Step2 is
treated with less deliberation. That’s where planning comes in

• Current demand 𝐷𝑡 reduces by 1 at (𝑆𝑡 , 𝐴𝑡) after (𝑆𝑡 , 𝐴𝑡) is
executed (unless it is already 0) while other elements remain
unchanged, i.e.

𝐷𝑡+1 𝑠, 𝑎 = ቊ
max 0, 𝐷𝑡 𝑠, 𝑎 − 1 , 𝑠, 𝑎 = 𝑆𝑡 , 𝐴𝑡

𝐷𝑡 𝑠, 𝑎 , otherwise

Such operation is written as 𝐷𝑡+1 = 𝐻(𝐷𝑡; 𝑆𝑡 , 𝐴𝑡)

• An exploration scheme 𝜓 is a mapping from demand-state
pairs to actions, i.e. 𝜓 𝐷; 𝑠 = 𝑎 indicates action 𝑎 should be
taken when at state 𝑠 and current demand is 𝐷

• Exploration cost 𝐶𝜓(𝐷; 𝑠, 𝑎) is the expected #steps needed for
𝐷 to become 0 in an MDP interaction process starting from
(𝑠, 𝑎) and following exploration scheme 𝜓

• The planning for exploration problem is an augmented
undiscounted MDP with:

• (Augmented) state space 𝒟 × 𝒮, action space 𝒜

• Transition Pr 𝐷′, 𝑠′, 𝑎 𝐷, 𝑠 = ቊ
𝑃 𝑠′ 𝑠, 𝑎 , 𝐷′ = 𝐻(𝐷; 𝑠, 𝑎)

0, otherwise

• Each step yields cost 1 when 𝐷𝑡 ≠ 𝟎, and cost 0 after 𝐷𝑡 = 𝟎

• Thus Bellman equation for exploration cost is

𝐶𝜓 𝐷; 𝑠, 𝑎 = ൞
1 + ෍

𝑠′∈𝒮

𝑃 𝑠′ 𝑠, 𝑎 𝐶𝜓(𝐷′; 𝑠′, 𝜓(𝐷′, 𝑠′)) , 𝐷 ≠ 𝟎

0, 𝐷 = 𝟎

where 𝐷′ = 𝐻(𝐷; 𝑠, 𝑎).

• We want less exploration cost, so optimal scheme 𝜓∗ has the

least 𝐶𝜓(𝐷; 𝑠, 𝑎) at every demand-state-action tuple (𝐷; 𝑠, 𝑎)

• Bellman optimality equation for exploration cost is

𝐶∗ 𝐷; 𝑠, 𝑎 = ൞
1 + ෍

𝑠′∈𝒮

𝑃 𝑠′ 𝑠, 𝑎 min
𝑎′∈𝒜

𝐶∗(𝐷′; 𝑠′, 𝑎′) , 𝐷 ≠ 𝟎

0, 𝐷 = 𝟎

where 𝐷′ = 𝐻(𝐷; 𝑠, 𝑎).

• The optimal exploration scheme 𝜓∗ can be computed by our
Value Iteration for Exploration Cost (VIEC) algorithm which
solves the above equation through a modified Value Iteration
process (see paper for detail)

• Since the demand space 𝒟 is exponential in the number of states
|𝒮|, the computation of 𝜓∗ is expensive

• However, most of 𝒟 becomes irrelevant after the initial 𝐷0 is given

• So it should be possible to significantly speed up the computation
with techniques such as prioritised sweeping (left to future work)

• VIEC needs to know transition probabilities 𝑃 to compute 𝜓∗.
When 𝑃 is unavailable, we can use the estimated transition ෠𝑃
instead, following an iterative process:

• Compute exploration scheme 𝜓 = VIEC(𝐷, ෠𝑃)

• Collect data by following 𝜓

• Update ෠𝑃 from collected data, jump to the first step with updated ෠𝑃

TOWER MDP: OPTIMAL SCHEME

• Optimal scheme: take the marked
path 𝑚 × 𝑑 times, each time
select a bandit arm with positive
demand at the corresponding
downward state

• Total exploration cost is 2ℎ𝑚𝑑
= 𝜣 𝒏𝒎𝒅 .

TOWER MDP: MBIE

• MBIE chooses action with highest ෨𝑄(𝑠, 𝑎) which is computed
using Bellman equation with modified ෨𝑃 and/or ෨𝑅 that are the
upper bounds of confidence intervals of ෠𝑃 and ෠𝑅

• Like R-MAX, MBIE discounts “uncertainty” with distance and
thus is weak to the distance traps

• However, the “uncertainty” (represented by
𝛽

𝑁 𝑠,𝑎
terms in

CIs) diminishes as the number of data 𝑁(𝑠, 𝑎) increases, which
makes MBIE being absorbed less than R-MAX by a nearby
“unknown” bandit in tower MDPs:

• In the best case (being trapped by each arm only once), the
total exploration cost of MBIE is 2 + 4 + 6 +⋯+ 2ℎ 𝑚 +
2ℎ𝑚 𝑑 − 1 = 𝜣(𝒏𝟐𝒎+ 𝒏𝒎𝒅)

• Reward trap: Further, if all bandits give positive rewards, MBIE
can be attracted more often than above by the lower-level
bandits due to these rewards being considered in ෨𝑄

• Thus its actual performance will be between 𝛩(𝑛2𝑚 + 𝑛𝑚𝑑) and
𝛩(𝑛2𝑚𝑑)

• Remark: reader may argue that rewards are not always “traps”
because they can be designed to guide exploration. However,
practice tells us designing a reward function that can properly
represent the learning target is already difficult (otherwise we don’t
need Inverse RL), so designing a reward function that can both
represent the learning target and guide exploration is very difficult.
If you try training a Super Mario agent you in this way, you will see
Mario ignoring the goal and just trying to get coins infinitely.

CONCLUSION & FUTURE WORK

• Existing systematic strategies are good at specifying the
exploration demands, but are weak at fulfilling them

• Prone to distance & reward traps

• Explicit planning for exploration helps fulfil the exploration
demand more efficiently

• It avoids unnecessary revisits to already explored states that are
caused by greedily following predefined heuristics

• The planning problem can be described as augmented MDPs

• Optimal exploration scheme exists and can be found by solving
Bellman optimality equation for exploration cost

• Our VIEC algorithm can solve it, though with a high computational
cost

• Future work:

• Fast approximation to VIEC, since the augmented state space is too
large and difficult to iterate over

• Try to classify common MDPs by their dynamic properties, and find
out which heuristics are helpful for each class – they can still be
helpful when the properties of heuristics and MDP matches

TOWER MDP: WHERE HEURISTICS FAIL

• We use tower MDPs to analyse when and how heuristics fail
and planning helps

• A tower MDP of height ℎ = 5:

• Upward states {𝑠1, … , 𝑠ℎ}, downward states {𝑠1
′ , … , 𝑠ℎ

′ }

• Taking action 𝑎 at 𝑠𝑖 ∈ {𝑠1, … , 𝑠ℎ−1} goes to 𝑠𝑖+1 with pr=1

• Taking action 𝑎′ at 𝑠𝑖 ∈ {𝑠1, … , 𝑠ℎ} goes to 𝑠𝑖
′ with pr=1

• Each 𝑠𝑖
′ is an 𝑚-armed bandit with unknown reward

distributions and leads to 𝑠𝑖−1
′ (or 𝑠1 if 𝑖 = 1)

• Initial demand 𝐷0: uniformly set to a positive interger 𝑑 for all
𝑚-armed bandits, and set to 0 for all (𝑠𝑖 , 𝑎) and 𝑠𝑖 , 𝑎

′ due to
no uncertainty there

TOWER MDP: R-MAX

• R-MAX chooses action with highest ෨𝑄(𝑠, 𝑎) which is computed
using a modified Bellman equation where “unknown” (𝑠, 𝑎)

(the ones with positive demand) have ෨𝑄 𝑠, 𝑎 =
𝑅max

1−𝛾
, which

encourages exploration to such (𝑠, 𝑎).

• Distance trap: due to such design, “uncertainty” is discounted
when passed to other states, resulting in R-MAX tending to
prioritise the “unknown” state-actions that are near the
current state

• In tower MDPs, this results in R-MAX being strongly attracted
by the closest “unknown” bandits, greatly increasing the total
exploration cost:

• Total exploration cost: 2𝑚𝑑 + 4𝑚𝑑 +⋯+ 2ℎ 𝑚𝑑 =
ℎ ℎ + 1 𝑚𝑑 = 𝜣(𝒏𝟐𝒎𝒅).

…

…

