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ABSTRACT

• Systematic exploration strategies: R-MAX, MBIE, UCRL, their 
variants, etc. are essentially heuristic-based

• Choose actions greedily w.r.t. some predefined heuristics

• When heuristics do not match MDP’s property well, excessive 
exploration can happen, reducing learning efficiency

• We propose that explicit planning for exploration helps

• Treat exploration as a two-part procedure: 
1. Evaluate how much data is needed at each state-action pair

(= specify an exploration demand matrix)
2. Actually explore and collect data (= fulfil the demand)

• The second step can be explicitly planned by our Value Iteration for 
Exploration Cost (VIEC) algorithm

• To show how explicit planning helps, exploration behaviours of 
𝜀-greedy, R-MAX, MBIE, and the optimal exploration scheme in 
tower MDPs are analysed and compared 

• Systematic strategies (heuristics): 𝑂(𝑛2𝑚𝑑) or 𝑂(𝑛2𝑚+ 𝑛𝑚𝑑)

• Optimal exploration scheme: 𝑂(𝑛𝑚𝑑)

• 𝑛 = #states, 𝑚 = #actions, 𝑑 = demand at each state-action pair

• Exploration behaviour analysis also shows that existing 
systematic strategies are weak to

• Distance traps: uncertainty being wrongly diminished

• Reward traps: irrelevant rewards that mislead exploration

DEMAND MATRIX

• To guarantee the quality of policy, systematic exploration 
strategies usually use Hoeffding’s or Chernoff’s inequalities to 
evaluate how much data should be collected at each (𝑠, 𝑎)

• Leads to PAC property (sample complexity bounds) or regret bounds

• R-MAX needs 𝑂(
1

𝜀2 1−𝛾 4 (𝑛 + ln
𝑛𝑚

𝛿
)) data at every (𝑠, 𝑎) to be 

(𝜀, 𝛿)-PAC [Kakade, 2003; Strehl et al., 2009]

• MBIE needs 𝑂(
1

𝜀2 1−𝛾 4 (𝑛 + ln
𝑛𝑚

𝜀(1−𝛾)𝛿
)) [Strehl and Littman, 2008]

• In practice, obtaining a sufficiently good policy do not need 
that much data, so people manually tune the exploration 
parameters to control how much data to be collected

• We call such specifications of data requirement as 
(exploration) demands

• Demand matrix 𝐷: entry 𝐷 𝑠, 𝑎 = 𝑘 means at least 𝑘 data should 
be collected at (𝑠, 𝑎) in the following exploration activity

• For R-MAX with (𝜀, 𝛿)-PAC property, the elements of the initial 
demand matrix 𝐷𝑜 is uniformly set to 𝐷𝑜 𝑠, 𝑎 = 𝑘0 for all 𝑠, 𝑎

where 𝑘0 = 𝑂(
1

𝜀2 1−𝛾 4 (𝑛 + ln
𝑛𝑚

𝛿
))

• MBIE & UCRL: although they seem to decide the demand “on the 
fly” by using confidence intervals (CIs), the frequentist CIs 
themselves work as pre-data analysis, which means that the 
demand is already fixed before learning given the parameter 
settings (i.e. does not change “on the fly”, which is why they can be 
confidence procedures and thus have performance guarantees)

• If you already have some prior knowledge to MDP, you can directly 
specify the demand matrix to reduce unnecessary exploration

• Simple strategies such as 𝜀-greedy do not have fixed demand matrix 
and rely on pure luck to find useful information → low efficiency 

PLANNING FOR EXPLORATION

• Exploration can be regarded as a two-step procedure:

• Step1: Specify the exploration demand

• Step2: Fulfil the demand by collecting data through MDP interaction

• (optional) jump to Step1 with updated information

• Systematic exploration strategies excel at Step1, but Step2 is 
treated with less deliberation. That’s where planning comes in

• Current demand 𝐷𝑡 reduces by 1 at (𝑆𝑡 , 𝐴𝑡) after (𝑆𝑡 , 𝐴𝑡) is 
executed (unless it is already 0) while other elements remain 
unchanged, i.e.

𝐷𝑡+1 𝑠, 𝑎 = ቊ
max 0, 𝐷𝑡 𝑠, 𝑎 − 1 , 𝑠, 𝑎 = 𝑆𝑡 , 𝐴𝑡

𝐷𝑡 𝑠, 𝑎 , otherwise

Such operation is written as 𝐷𝑡+1 = 𝐻(𝐷𝑡; 𝑆𝑡 , 𝐴𝑡)

• An exploration scheme 𝜓 is a mapping from demand-state 
pairs to actions, i.e. 𝜓 𝐷; 𝑠 = 𝑎 indicates action 𝑎 should be 
taken when at state 𝑠 and current demand is 𝐷

• Exploration cost 𝐶𝜓(𝐷; 𝑠, 𝑎) is the expected #steps needed for 
𝐷 to become 0 in an MDP interaction process starting from 
(𝑠, 𝑎) and following exploration scheme 𝜓

• The planning for exploration problem is an augmented 
undiscounted MDP with:

• (Augmented) state space 𝒟 × 𝒮, action space 𝒜

• Transition Pr 𝐷′, 𝑠′, 𝑎 𝐷, 𝑠 = ቊ
𝑃 𝑠′ 𝑠, 𝑎 , 𝐷′ = 𝐻(𝐷; 𝑠, 𝑎)

0, otherwise

• Each step yields cost 1 when 𝐷𝑡 ≠ 𝟎, and cost 0 after 𝐷𝑡 = 𝟎

• Thus Bellman equation for exploration cost is

𝐶𝜓 𝐷; 𝑠, 𝑎 = ൞
1 + ෍

𝑠′∈𝒮

𝑃 𝑠′ 𝑠, 𝑎 𝐶𝜓(𝐷′; 𝑠′, 𝜓(𝐷′, 𝑠′)) , 𝐷 ≠ 𝟎

0, 𝐷 = 𝟎

where 𝐷′ = 𝐻(𝐷; 𝑠, 𝑎).

• We want less exploration cost, so optimal scheme 𝜓∗ has the

least 𝐶𝜓(𝐷; 𝑠, 𝑎) at every demand-state-action tuple (𝐷; 𝑠, 𝑎)

• Bellman optimality equation for exploration cost is

𝐶∗ 𝐷; 𝑠, 𝑎 = ൞
1 + ෍

𝑠′∈𝒮

𝑃 𝑠′ 𝑠, 𝑎 min
𝑎′∈𝒜

𝐶∗(𝐷′; 𝑠′, 𝑎′) , 𝐷 ≠ 𝟎

0, 𝐷 = 𝟎

where 𝐷′ = 𝐻(𝐷; 𝑠, 𝑎).

• The optimal exploration scheme 𝜓∗ can be computed by our 
Value Iteration for Exploration Cost (VIEC) algorithm which 
solves the above equation through a modified Value Iteration 
process (see paper for detail)

• Since the demand space 𝒟 is exponential in the number of states 
|𝒮|, the computation of 𝜓∗ is expensive

• However, most of 𝒟 becomes irrelevant after the initial 𝐷0 is given

• So it should be possible to significantly speed up the computation 
with techniques such as prioritised sweeping (left to future work)

• VIEC needs to know transition probabilities 𝑃 to compute 𝜓∗. 
When 𝑃 is unavailable, we can use the estimated transition ෠𝑃
instead, following an iterative process:

• Compute exploration scheme 𝜓 = VIEC(𝐷, ෠𝑃)

• Collect data by following 𝜓

• Update ෠𝑃 from collected data, jump to the first step with updated ෠𝑃

TOWER MDP: OPTIMAL SCHEME

• Optimal scheme: take the marked
path 𝑚 × 𝑑 times, each time 
select a bandit arm with positive
demand at the corresponding
downward state

• Total exploration cost is 2ℎ𝑚𝑑
= 𝜣 𝒏𝒎𝒅 .

TOWER MDP: MBIE

• MBIE chooses action with highest ෨𝑄(𝑠, 𝑎) which is computed 
using Bellman equation with modified ෨𝑃 and/or ෨𝑅 that are the 
upper bounds of confidence intervals of ෠𝑃 and ෠𝑅

• Like R-MAX, MBIE discounts “uncertainty” with distance and 
thus is weak to the distance traps

• However, the “uncertainty” (represented by 
𝛽

𝑁 𝑠,𝑎
terms in 

CIs) diminishes as the number of data 𝑁(𝑠, 𝑎) increases, which 
makes MBIE being absorbed less than R-MAX by a nearby 
“unknown” bandit in tower MDPs:

• In the best case (being trapped by each arm only once), the 
total exploration cost of MBIE is 2 + 4 + 6 +⋯+ 2ℎ 𝑚 +
2ℎ𝑚 𝑑 − 1 = 𝜣(𝒏𝟐𝒎+ 𝒏𝒎𝒅)

• Reward trap: Further, if all bandits give positive rewards, MBIE 
can be attracted more often than above by the lower-level 
bandits due to these rewards being considered in ෨𝑄

• Thus its actual performance will be between 𝛩(𝑛2𝑚 + 𝑛𝑚𝑑) and 
𝛩(𝑛2𝑚𝑑)

• Remark: reader may argue that rewards are not always “traps” 
because they can be designed to guide exploration. However, 
practice tells us designing a reward function that can properly 
represent the learning target is already difficult (otherwise we don’t 
need Inverse RL), so designing a reward function that can both 
represent the learning target and guide exploration is very difficult. 
If you try training a Super Mario agent you in this way, you will see 
Mario ignoring the goal and just trying to get coins infinitely.

CONCLUSION & FUTURE WORK

• Existing systematic strategies are good at specifying the 
exploration demands, but are weak at fulfilling them

• Prone to distance & reward traps

• Explicit planning for exploration helps fulfil the exploration 
demand more efficiently

• It avoids unnecessary revisits to already explored states that are
caused by greedily following predefined heuristics

• The planning problem can be described as augmented MDPs

• Optimal exploration scheme exists and can be found by solving
Bellman optimality equation for exploration cost

• Our VIEC algorithm can solve it, though with a high computational 
cost

• Future work:

• Fast approximation to VIEC, since the augmented state space is too 
large and difficult to iterate over

• Try to classify common MDPs by their dynamic properties, and find 
out which heuristics are helpful for each class – they can still be 
helpful when the properties of heuristics and MDP matches

TOWER MDP: WHERE HEURISTICS FAIL

• We use tower MDPs to analyse when and how heuristics fail 
and planning helps

• A tower MDP of height ℎ = 5:

• Upward states {𝑠1, … , 𝑠ℎ}, downward states {𝑠1
′ , … , 𝑠ℎ

′ }

• Taking action 𝑎 at 𝑠𝑖 ∈ {𝑠1, … , 𝑠ℎ−1} goes to 𝑠𝑖+1 with pr=1

• Taking action 𝑎′ at 𝑠𝑖 ∈ {𝑠1, … , 𝑠ℎ} goes to 𝑠𝑖
′ with pr=1

• Each 𝑠𝑖
′ is an 𝑚-armed bandit with unknown reward 

distributions and leads to 𝑠𝑖−1
′ (or 𝑠1 if 𝑖 = 1)

• Initial demand 𝐷0: uniformly set to a positive interger 𝑑 for all 
𝑚-armed bandits, and set to 0 for all (𝑠𝑖 , 𝑎) and 𝑠𝑖 , 𝑎

′ due to 
no uncertainty there

TOWER MDP: R-MAX

• R-MAX chooses action with highest ෨𝑄(𝑠, 𝑎) which is computed 
using a modified Bellman equation where “unknown” (𝑠, 𝑎)

(the ones with positive demand) have ෨𝑄 𝑠, 𝑎 =
𝑅max

1−𝛾
, which 

encourages exploration to such (𝑠, 𝑎).

• Distance trap: due to such design, “uncertainty” is discounted 
when passed to other states, resulting in R-MAX tending to 
prioritise the “unknown” state-actions that are near the 
current state

• In tower MDPs, this results in R-MAX being strongly attracted 
by the closest “unknown” bandits, greatly increasing the total 
exploration cost:

• Total exploration cost: 2𝑚𝑑 + 4𝑚𝑑 +⋯+ 2ℎ 𝑚𝑑 =
ℎ ℎ + 1 𝑚𝑑 = 𝜣(𝒏𝟐𝒎𝒅).
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